

The New NORA Fuel Savings Analysis Calculator Energy Efficiency at Your Fingertips!

> Dr. Tom Butcher / NORA / BNL Roger Marran: Energy Kinetics

The Science Of Efficiency

- Original motivation manufacturers of integrated hydronic heating systems were interested in offering improved features, including controls and better insulation, but could not share with consumers the energy savings benefits.
- Experience showed that achieved fuel savings in the field were greater than AFUE (heating only) showed.
- In growing field of energy audits and home energy performance, heating system opportunities were being overlooked.

Goal of the BNL Measurement Project

Test Method

* To Data Acquisition / Control System

Output results

Performance of Integrated Hydronic Heating Systems

DECEMBER 2007

BNL-79814-2008-IR

Performance of Integrated Hydronic Heating Systems

Project Report December 2007

Thomas A. Butcher

Prepared for the New York State Energy Research and Development Authority and National Oilheat Research Alliance

> Energy Resources Division Department of Energy Sciences and Technology

> > Brookhaven National Laboratory Brookhaven Science Associates Upton, NY 11973-5000

Under Contract No. DE-ACO2-98CH10886 with the United States Department of Energy

Notos: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-A02248CH10808 with he U.S. Department of Energy. The publisher by accepting the manuscript for publication achievancies that the United State Sciencement Interian some exolusive, padial, unrecodate, word head losses to publish or reproduce the publisher form of this manuscript, or allow others to do so, for United States Government purposes.

"Performance of Integrated Hydronic Heating Systems" (2007), Energy Resources Division, Department of Energy Sciences and Technology, Brookhaven National Laboratory, Under Contract No. DE-ACO2-98CH10886 with the United States Department of Energy by Dr. T. Butcher http://www.osti.gov/bridge/purl.cover.jsp?purl=/924431-kio3fU/

Three Systems With Comparable AFUE

Three Systems With Comparable AFUE

Oversizing virtually eliminated.

Table of Results

Table	e 3. Results of Analysi	is of Annual	Performance	e with Each	Unit		
Unit	Description	Steady State Thermal Efficiency (%)	Idle Loss (%)	Annual Efficiency ¹ (%) Oversize = 2	Annual Efficiency ¹ (%) Oversize = 3	Summer DHW oil use (gal) Oversize = 2	Annual Oil Use (gal) ² Oversize =2
1	Oil, cast iron boiler with tankless	83.7	1.2	77.9	74.9	.54	897
2	Oil, cast iron boiler with indirect	78.4	2.1	72.9	65.1	.74	1007
3	Oil, steel boiler with purge control	86.5	.15	85.7	85.3	.36	816
4	Oil condensing boiler	92.0	1.5	84.2	80.3	.54	830
5	Oil, well insulated cast iron	87.5	.69	84.4	82.7	.42	828
6	Oil, water heater used also for heating	81.5	1.2	75.9	73.0	.56	921
7	Oil, combi System	79.5	.8	75.8	73.8	.51	923
8	Gas atmospheric with tankless	72.5	1.7	65.6	62.2	.72	1065
9	Gas atmospheric water heater	74.5	.65			.51	976
8+9	Gas boiler + separate gas water heater			66.6	64.7	.51	1081
10	Old cast iron boiler	72.8	2.1	64.5	60.4	.79	1085
11	Gas cond. modulating	88.5	.60	85.3	83.6	.42	819
12a	tankless mode	78.0	4.87	60.0	52.9	1.22	1165
12b	indirect mode	78.0	1.16	72.8	70.1	.57	960
1 D a	and on oversize factor	stated not a	ectual firring	rate tested			

83.5 AFUE tankless coil (poorest performing)

87.5 AFUE steel boiler with purge control (best performing)

Upgrade from 52.9% to 85.3% yields 38% savings

Dept. of Energy NODA oversizing analysis: Oilheat: 3x oversized Natural Gas: 4x oversized

1. Dased on oversize factor stated, not actual fining fate tested.

Additional savings not addressed in these figures may result from sealed combustion systems without draft regulators or draft diverters, and from upgrades from systems with greater oversizing to systems with lower idle loss.

Table of Results

Tabl	e 3. Results of Analysi	is of Annual	Performanc	e with Each	Unit				
Unit	Description	Steady	Idle Loss	Annual	Annual	Summer	Annual Oil	83.5 AFUE tankless coll	
		State Thermal	(%)	(%)	Efficiency'(%)	DHW oil	Use (gal)" Oversize =2		
		Efficiency		Oversize =	0 VEI 312E - 5	Oversize = 2	0Ver512e -2	(poorest performing)	
		(%)		2					
1	Oil, cast iron boiler.	83.7	1.2	77.0	74.9	54	807		
1	with tankless	05.7	1.2	11.2	74.5		057		
2	Oil. cast iron								
-	with indirect		00		200			trol (best	
3	Oil, steel		ES	-				EVEN III (DESI	
	with purge co			-					
4	Oil cond					_			
	boiler			4					
5	Oil, well ins 🚬							rennall	
	cast iron			Ger				52 9% to	
6	Oil, water						-	02.07010	
	used also	L -						8% saving	C
-	heating	TO					A rc		
7	Oil, combi S								
8	Gas atmosph								
0	With tankless					-	4		
9	Water heater						Ctr		
8+9	Gas hoile					UU	SU	V Ivsis:	
0.2	separate gas								
	heater							Unreal ox oversized	
10	Old cast iron boiler	72.8	2.1	64.5	60.4	.79	1085		
11	Gas cond.	88.5	.60	85.3	83.6	.42	819	Natural Gas: 4x oversize	d
	modulating								
12a	tankless mode	78.0	4.87	60.0	52.9	1.22	1165		
12b	indirect mode	78.0	1.16	72.8	70.1	.57	960		

1. Based on oversize factor stated, not actual firing rate tested.

Additional savings not addressed in these figures may result from sealed combustion systems without draft regulators or draft diverters, and from upgrades from systems with greater oversizing to systems with lower idle loss.

NYSERDA interest in a Better Way to Identify Idle Loss

Field Characteristics Existing Equipment New Equipment

Energy Kinetics CSG NYSERDA BNL

A Field Approach: Estimate Idle Loss Using Equipment Characteristics

Systems with Similar AFUE and Combustion Efficiency may have very Different Annual Efficiency

A practical example demonstrating idle loss impact:

Outdoor Reset Controls

Idle Loss vs. **AFUE and Combustion Efficiency** Stack loss measure based on: 1) Temperature CO2 or O2 For example: 500 pounds 12 gallons of water Cold start to 180°F Heats up in ~15 minutes

NYSERDA

What Is The Combustion Efficiency?

	NET STACK TEMPERATURE °F												
200	250	300	350	400	450	500	550	600	650	700	750	800	%CO2
89.6	88.4	87.3	86.2	85.1	84.0	82.9	81.7	80.6	79.5	78.4	77.3	76.2	14.7
89.4	88.2	87.0	85.9	84.7	83.6	82.4	81.2	80.1	78.9	77.7	76.6	75.4	14.0
89.2	87.9	86.7	85.5	84.3	83.1	81.9	80.7	79.4	78.2	77.0	75.8	74.6	13.2
88.9	87.7	86.4	85.1	83.8	82.6	81.3	80.0	78.7	77.5	76.2	74.9	73.6	12.5
88.7	87.3	86.0	84.6	83.3	82.0	80.6	79.3	77.9	76.6	75.3	73.9	72.6	11.7
88.4	87.0	85.5	84.1	82.7	81.3	79.9	78.5	77.0	75.6	74.2	72.8	71.4	11.0
88.0	86.5	85.0	83.5	82.0	80.5	79.0	77.5	76.0	74.5	73.0	71.5	70.0	10.3

Temperature reset controls can save because of reduced idle loss

180° F Supply
400° F StackTemperature Reset130° F Supply11% CO250° F Stack350° F Stack11% CO211% CO2

Idle Loss

Temperature reset can save 5% to 10% by reducing idle loss

15 minutes to 180° F 10 minutes to 130° F

Up to five minutes less burner run time 'Idle Loss'

NYSERDA

Modeling Idle Loss based on System Test Results In BNL Study

Figure 1. Comparison of IHET to Brookhaven lab test results

The mean absolute error of the group is 2.3% using a series of questions to characterize the systems tested.

Questions are Easy for Tech to Answer

FSA 2.0 shown using IHET Tool Engine

- Home Information
- Boiler Information

Home Info:	Number of Bedrooms or People, whichever is more		Gallons Used	
Gallons	1	•	750	•
Boiler Info				
Venting Type		Draft D)iverter/Regulator	
Atmospheric	•	0	Yes	
Steam System				
No	•			
Efficiency Type		Steady	v State Efficiency (%)	
AFUE		()	65	•
Combustion Efficency				
SSE				
Don't know / Vintage				
Output Capacity (DOE)		Boiler	Insulation > 1"	
100000		0	No	
High Idle Loss		Tankle	ss Coil Water Heater	
No	•	0	No	

Tankless Coil Boilers consuming a firing rate per day in summer usually have the high idle loss characteristic.

Additional Questions

- Boiler Controls
- Water Heating Information

Boiler Controls	
Cold Start	
Yes	•
Energy Saving Controls	
O No	•
Boiler Gallons	
2 10	
Water Heating Info	
Standalone Water Heater	
No	•
Storage Tank > 2" Insulation or Foam	
No	•

Answering the Questions Models Efficiency

A direct load emulation approach based on the TMY3 weather site, and a bin analysis is used to determine the annual performance.

Existing 65% Combustion Efficiency: 56% Annual Efficiency Low Mass Thermal Purge 88% AFUE: 86% Annual Efficiency

FSA CALCULATOR 2.0	RA			MENU -
Oil Price: \$ 2.00 Update	Reporting: Displaying Efficiencies	Chart Display:	Mode:	
Original Equipment:	Equipment #1:			
Modify Assumption	Modify Low mass with purge (•		
Design Heat Load: 21459 Steady State Efficiency: 65% Idle Loss(%): 1.2 Heating Capacity: 100000 Annual Efficiency: 56%	Design Heat Load: 21459 Steady State Efficiency: 88% Idle Loss(%): 0.15 Heating Capacity: 100000 Annual Efficiency: 86%	o Current Syste	5 Years 10 Years 19 Sears 20 years	
\$12,000 -			\$10,420	
\$10,000 - \$8,000 -		\$7,815		
\$6,000 -	\$5,210			-
\$4,000 - 52.605				-
\$2,000		_		
30	Low	mass with purge control		

FSA20

Visit: www.FSACalc.com

