NORA/NYSERDA Tankless Coil Project Findings

T. Butcher, N. Islam, J. Levey, and R. Kerr National Oilheat Research Alliance

NORA Technical Workshop Southern New England Energy Conference Sept 24, 2018

Objectives

- Evaluate the efficiency and capacity of a range of tankless coil boilers
- Develop best practice recommendations

Tests

- Hot water capacity
- Idle loss
- Efficiency in simulated use test

Efficiency – 24 hour simulated use test – conventional coil

Unit	Efficiency
Steel boiler - 2 gpm coil	22.0
Cast iron bailar E ann cail	33.9
Cast from boller - 5 gpm coll	38.5
Cast iron boiler - 3 gpm coil	40.8

Efficiency – 24 hours simulated use test with combi-boiler – external plate heat exchanger

	24 Hour Efficiency
Mode	(%)
Fixed Temperature	49.4
Fixed Temperature with added insulation on piping	51.8
Fixed Temperature with added insulation on piping and off cycle	
air damper	56.0
Cold Start	62.5
Cold Start with 2 minute heat-up and added insulation	67.1
Cold Start with 2 minute heat-up, added insulation and off cycle air	
damper.	67.0

Annual Analysis

- During non-heating season use DHW simulated use test
- During heating season use the same linear output/input model that is the basis of the FSA
- Run different cases covering the range of measurements in this project.

	Case	Steady State	Steady State	Idle Loss	Summer	Annual Oil Use
– 1.		Heat Output	Thermal		Domestic Hot	
Results		Capacity	Efficiency		Water	
of					Production	
A normal					Efficiency	
Annual						
Analysis	-	Btu/hr	%	% of Steady	%	gallons
-				State Energy		
				Input Rate		
	A	125,000	80	2	33	1071
	В	125,000	80	2	67	1009
	С	125,000	80	1	67	968
	D	125,000	80	3	33	1112
	E	125,000	80	0.5	67	948
	F	125,000	86	0.5	67	886
	G	125,000	86	1.0	67	905
	Н	125,000	92	0.5	67	832
Slide: 7	Ι	125,000	92	0.5	75	826

Best Practices

- Increase insulation in boiler jacket;
- Improve coupling between boiler water and DHW;
- Controls offer strong potential to improve summer performance;
- There is a comfort / efficiency trade off;
- How long is someone willing to wait for hot water?
- Higher boiler mass will increase time to recover from a lower temperature and deliver hot water;
- A high efficiency boiler with a well insulated indirect will still give better performance, but first cost is higher.

