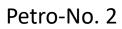
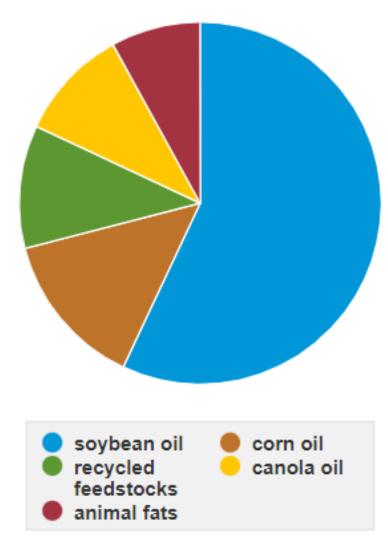

# What We Know About Biodiesel


# Tom Butcher National Oilheat Research Alliance

# The Future of Liquid Fuel Heating Tuesday October 25, 2022 Hartford, CT










# Feedstock inputs to U.S. biodiesel production, 2019

Total=12.75 billion pounds



 $\equiv$ 



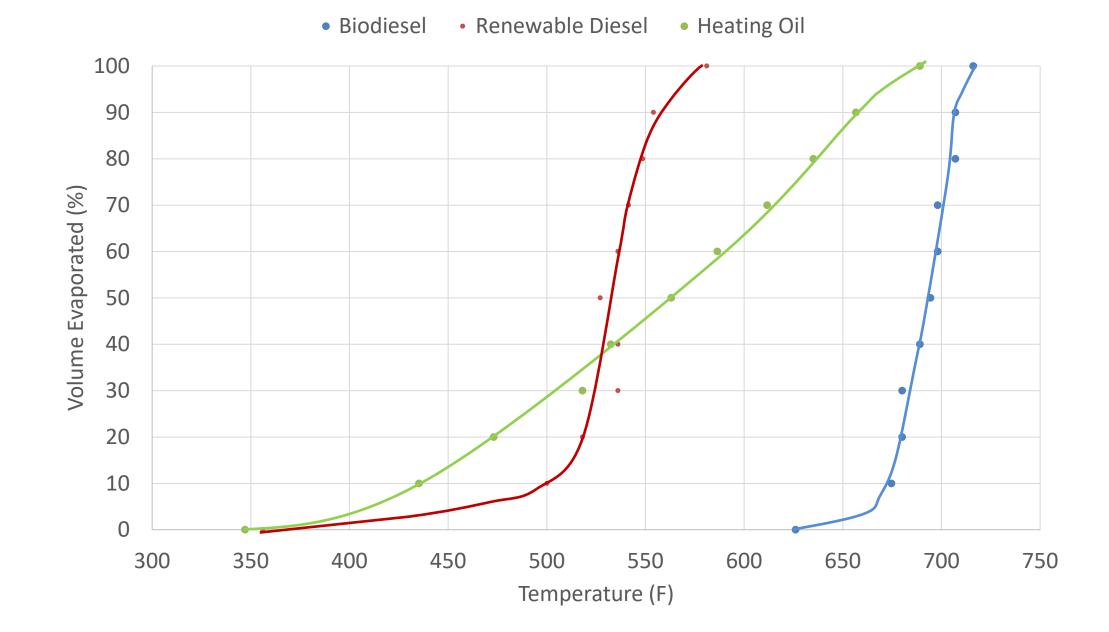
Data source: U.S. Energy Information Administration (EIA), Monti Biodiesel Production Report, May 2020

# **Typical Properties**

|                                            | Petroleum No.<br>2 Fuel Oil | Biodiesel | Renewable<br>Diesel (HVO) |
|--------------------------------------------|-----------------------------|-----------|---------------------------|
| C (w%)                                     | 86.8                        | 75.8      | 85.0                      |
| H (w%)                                     | 13.2                        | 12.6      | 15.0                      |
| O (w%)                                     | 0                           | 11.6      | 0                         |
| HHV <sup>2</sup> (Btu/gal)                 | 138,300                     | 125,300   | 132,800                   |
| Density (lb/gal)                           | 7.09                        | 7.34      | 6.51                      |
| Water Vapor<br>Saturation <sup>3</sup> (F) | 120                         | 121       | 121                       |



- 1. Higher Heating Value
- 2. Saturation temperature of flue gas water vapor at 30% excess air


#### **ASTM Property Limits**

| Fuel                                                 | No. 2     | B20       | B100       |
|------------------------------------------------------|-----------|-----------|------------|
| Standard                                             | ASTM D396 | ASTM D396 | ASTM D6751 |
| Distillation<br>Temperature<br>(max -F) <sup>1</sup> | 640       | 649       | 680        |
| Stability (min -<br>hrs)                             |           | 6         | 3          |
| Acid Number <sup>2</sup>                             |           | 0.3       | 0.5        |
| Flash Point (F)                                      | 100       | 100       | 199        |
| Viscosity <sup>3</sup>                               | 1.9-4.1   | 1.3-4.1   | 1.9-6.0    |
| Carbon Residue<br>(%)                                | 0.035     | 0.035     | 0.05       |

1. Temperature for 90% recovery

2. mg KOH/g

3. mm2/s at 40 C



#### Vapor Pressure vs. Temperature for 3 Different Fluids



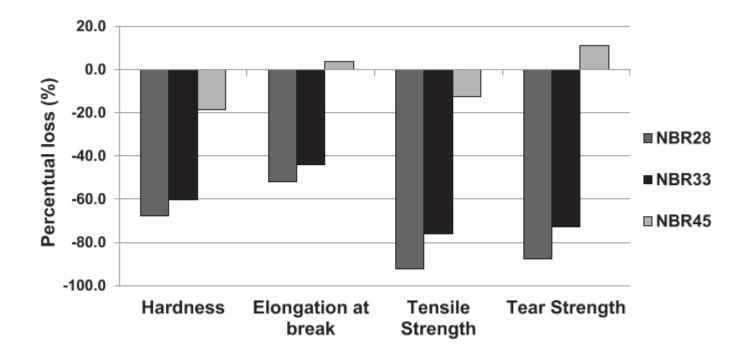
# **Cold Flow General**

| Biodiesel<br>Feedstock | Cloud Point °F | Pour Point °F |
|------------------------|----------------|---------------|
| Soy                    | 32             | 28            |
| Canola                 | 34             | 16            |
| Palm                   | 55             | 61            |
| Jatropha               | 46             | 43            |
| Tallow                 | 53-63          | 43            |

| Table 4.<br>Cold Flow Data for Various B100s <sup>14</sup> |                                   |    |                                |    |  |
|------------------------------------------------------------|-----------------------------------|----|--------------------------------|----|--|
| Degree of saturation                                       | B100<br>Cloud Point<br>ASTM D2500 |    | B100<br>Pour Point<br>ASTM D97 |    |  |
|                                                            | °F                                | °C | °F                             | °C |  |
| Low                                                        | 26                                | -3 | 25                             | -4 |  |
|                                                            | 32                                | 0  | 25                             | -4 |  |
|                                                            | 46                                | 8  | 43                             | 6  |  |
| Mid                                                        | 56                                | 13 | 55                             | 13 |  |
|                                                            | 61                                | 16 | 59                             | 15 |  |
| High                                                       | 66                                | 19 | 60                             | 16 |  |

Source: NREL Biodiesel Handling and Use Guide, Fifth Edition

# Elastomers


"Nitrile rubber" or Buna-N or NBR refer to the elastomer of interest

Nitrile rubber refers to a family of copolymers of (generally) acrylonitrile (ACN) and various butadiene monomers.

One very important factor in the properties of the produced elastomer is the "nitrile (ACN)/butadiene ratio. The higher this ratio the more resistant the product is but also the less flexible.

A range of other components are used in the elastomer production process including emulsifiers, catalysts, radical generating activators, reaction termination additives, antioxidants, coagulating agents and others.

Processing temperature and time also have strong impacts on the properties of the produced elastomer.



NBR45 = nitrile with 45% acrylonitrile content

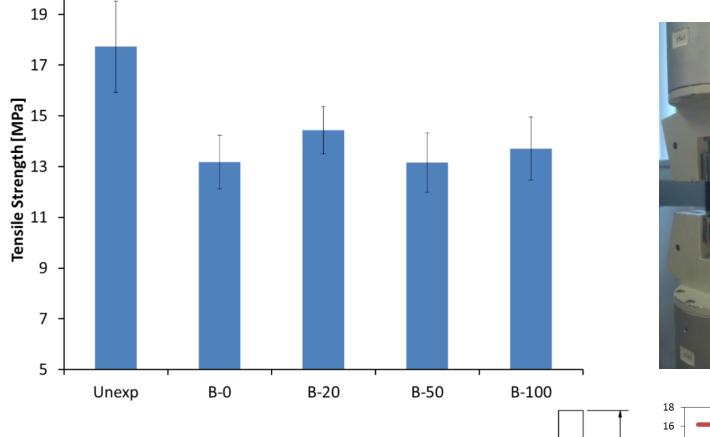
Example – Three different "nitriles" exposed to coconut oil biodiesel. Source – Linhares, F.N. et. al., Study of the compatibility of nitrile rubber with Brazilian biodiesel, Energy, 49, pp. 102-106 (2013).

"..the mechanical properties of the NBR sample comprising 45% acrylonitrile appeared unchanged even after immersion in biodiesel oils."

# **Biodiesel Nitrile**

Biodiesel is a clean burning alternative fuel produced domestically. Biodiesel is nontoxic, biodegradable and can be used in diesel engines usually with no modifications.

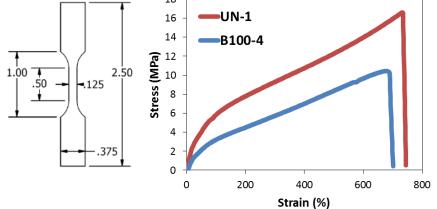
Biodiesel Nitrile is specially designed and developed for use in environments where alternative fuels are present. Immersion test results indicate that these materials are compatible with alternative fuels and are suitable for Bio-Diesel B20 (20% Bio-Diesel and 80% Petroleum Diesel) and Bio-Diesel B100 (100% Bio-Diesel).




# Jid Harvey' **FINDATRE** FLEXIBLE OIL LIN

Flexible braided steel outer casing

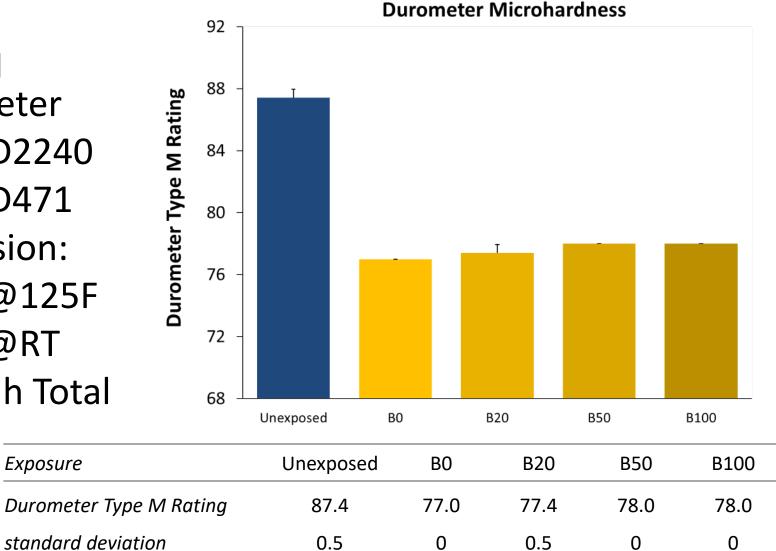
HNBR rubber compound


#### Tensile Strength – Biodiesel Blends





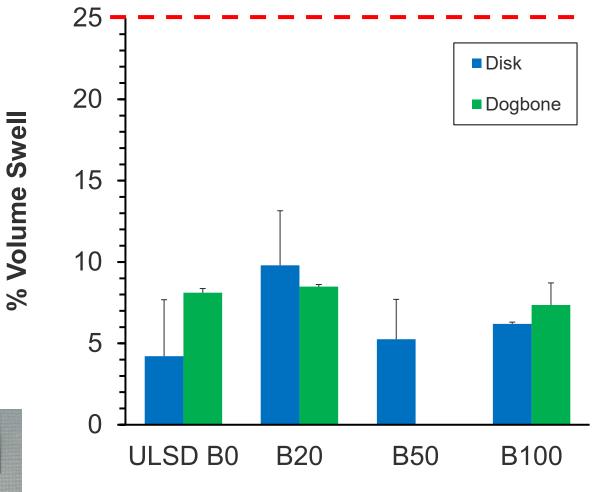
- ASTM D412
- ASTM D471
- TiraTest 26005 Load Frame (0.5 kN)
- Immersion: 670 h
  @125F

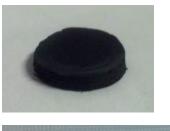

- Nitrile dogbone specimens
- Gage length = 20 mm
- Rate = 500 mm/min



#### **Durometer Microhardness – Biodiesel Blends**

- Type M Durometer
- ASTM D2240
- ASTM D471
- Immersion:  $\bullet$ 670 h @125F 840 h @RT = 1510 h Total

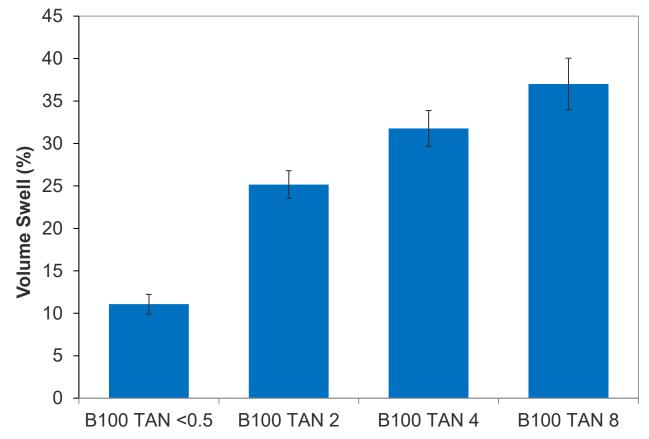

Exposure






# Volume Swell – Biodiesel Blends

- ASTM D471
- Water Displacement Method
- Immersion: 720 h @125F








# Volume Swell – Acid Number Effect

- ASTM D471
- Water
  Displacement
  Method
- Immersion: 720 h @125F
- Decanoic Acid (Total Acid Number(TAN)
   = 2, 4, 8)



# Legacy Pump Testing B0/B5 to B100

- Goal evaluate durability and failure modes of legacy oil burner pumps when using biodiesel blends ranging from B0/B5 to B100;
- Focus planned on pressure regulator piston seal but included whole pump;
- "Exposure" based on number of cycles with target of 500,000 cycles (equivalent to 50 years in the field).

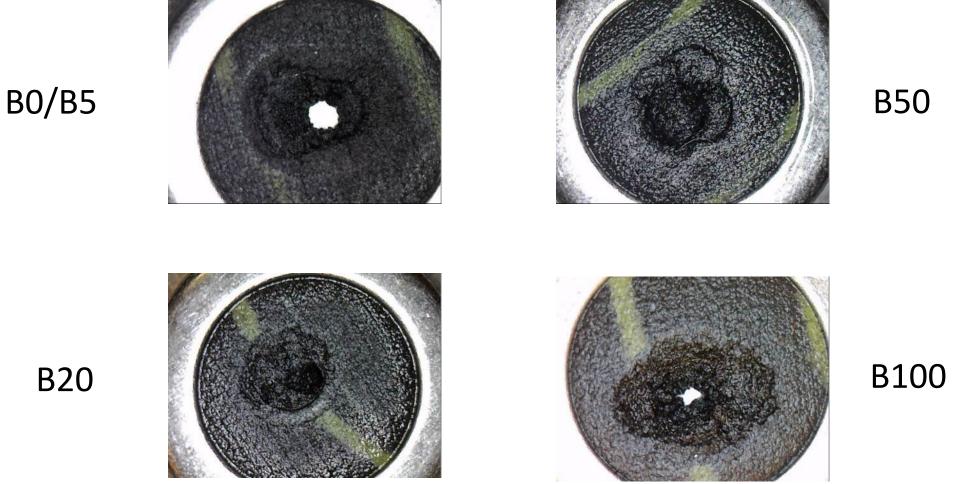


# Measuring Impact on Pumps

- Observation of any "seized" pumps or shaft seal failures;
- Planned stops at 100K, 200K, 350K, and 500K cycles;
- Shaft seal and pressure regulator piston face examined for all pumps;
- Diaphragm valve inspected for some cases;
- Full tear-down for inspection at 500,000 cycles all pumps;
- Cutoff test for all pumps at each stop point
  - Installation on a burner;
  - Detailed measurement of cut-off time based on cad cell transient.



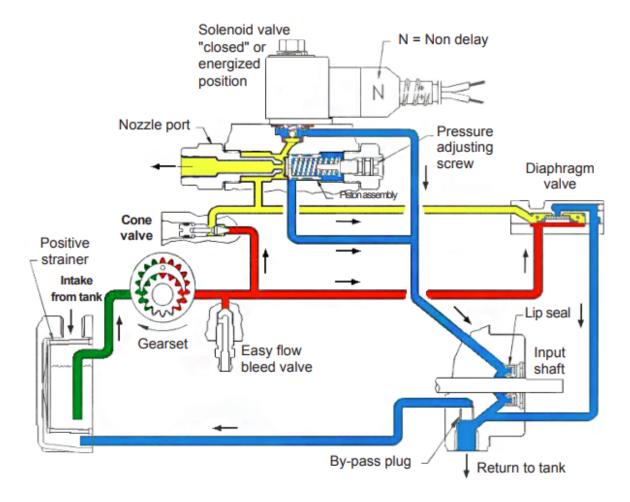
# Four pumps, 500K cycles, B100





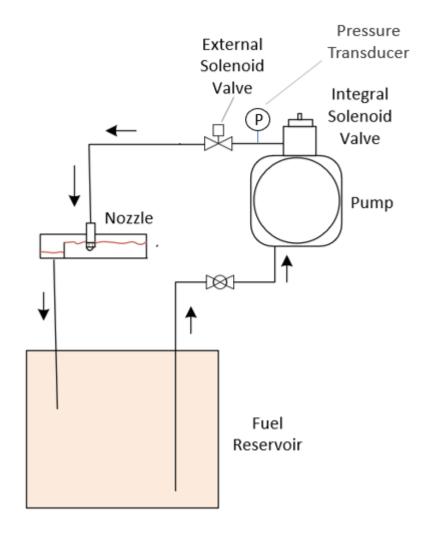






#### Example Results –<u>worst case</u>, 500K cycles, diaphragm valve



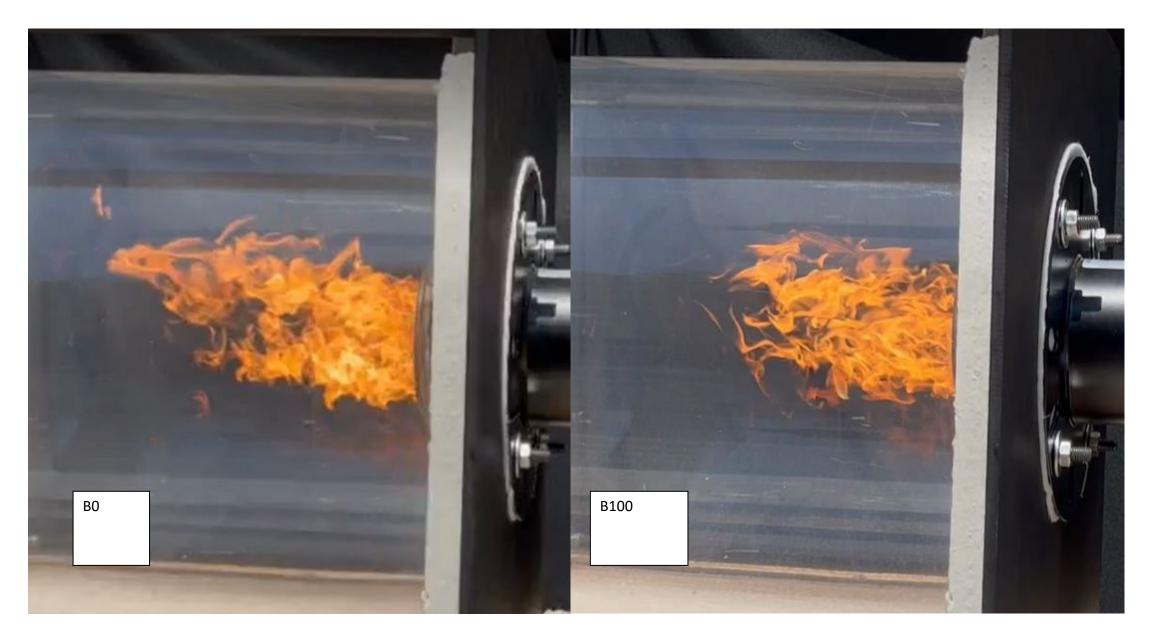
B20


#### **Next Generation Pump Testing**





#### Test Stand Setup


- Test set up at external site in Wantagh, NY
- 3 test stands, 10 pumps each B0, B20 and B100
- All pumps in each stand draws from same fuel bank of ~4 gallons
- Secondary solenoid valve and transducer installed on the outlet side of each pump
- All exiting fuel is returned to reservoir via radiator, which is cooled by fan
- Temperature sensors in reservoir and inside bottom left pump of each stand



#### Conclusions – Next Gen Pump Tests

- New seal materials have been qualified for B20 and B100
- Pump robustness have been improved towards blend with high biofuel content, latest findings will help to go one step further
- Technical solutions for « B100 ready » Fuel Units are defined and will be deployed within few months
- Standards (ASTM, UL) need to be updated, and tests for certification need to be performed to market official B100 rated Fuel Unit

#### **Combustion Performance**



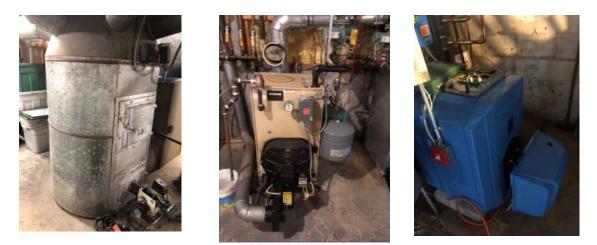
#### Combustion Testing

#### Cast iron boiler, standard burner

| Fuel                            | во      | B100    | % change |
|---------------------------------|---------|---------|----------|
| Burn Rate lb/hr                 | 6.85    | 7.32    | 6.9      |
| Heating Value, Btu/lb           | 19,500  | 17,062  | -12.5    |
| Heating Value, Btu/gal          | 138,490 | 127,960 |          |
| Input Rate Btu/hr               | 133,497 | 124,894 | -6.4     |
| T flue gas, °F                  | 528     | 530     | 0.4      |
| T blr, °F                       | 158     | 157     | -0.6     |
| Excess Air, %                   | 22.6    | 26.7    | 18.1     |
| Flue O2 measured, %             | 4.7     | 5.4     | 14.9     |
| Flue Water Vapor Saturation, °F | 119.9   | 121.7   | 1.5      |
| Cad Cell Resistance, ohms       | 132     | 520     | 293.9    |

#### Combustion Testing

#### Cast iron boiler, standard burner


| Fuel                            | во      | B100    | % change |
|---------------------------------|---------|---------|----------|
| Burn Rate lb/hr                 | 6.15    | 6.55    | 6.2      |
| Heating Value, Btu/lb           | 19,500  | 17,062  | -12.5    |
| Heating Value, Btu/gal          | 138,490 | 127,960 | -7.6     |
| Input Rate Btu/hr               | 119,925 | 111,756 | -6.8     |
| T flue gas, °F                  | 472     | 464     | -1.7     |
| T blr, °F                       | 161     | 161     | 0        |
| Flue CO2 measured, %            | 12.2    | 11.9    | -2.4     |
| Flue Water Vapor Saturation, °F | 119.9   | 121.7   | 1.5      |

**Biodiesel Field Testing Goals** 

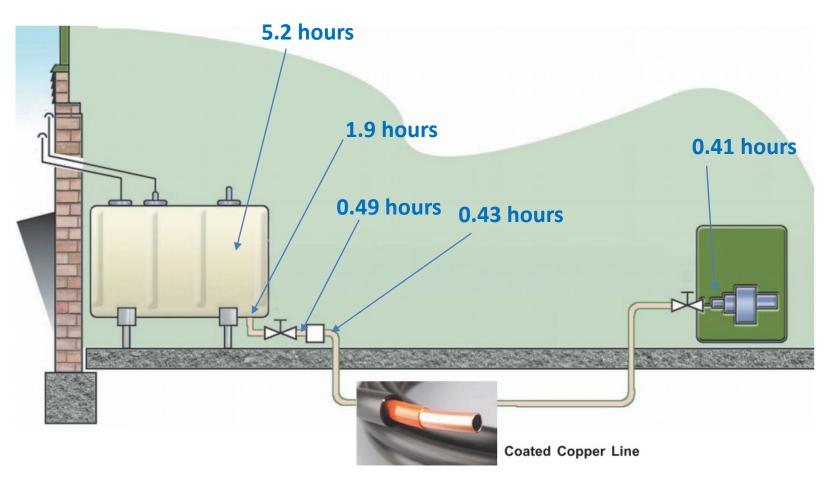
Does biodiesel maintain its quality over time in home tanks? When changing from low blends to high blends how much is excess air or CO<sub>2</sub> impacted?

Over extended periods, in normal use, how does biodiesel impact the heating system?





### General observations from several field campaigns


B20 to B100 sites;

Sites with up to 5 years of biodiesel blend use;

Acid numbers can exceed 0.5 but rarely over 0.8;

Measured oxidative reserve often very low but depends on sampling location;

In some sites very high filterable particulates at the pump bleeder point.



Measured oxidative reserve (stability / Rancimat) Field site with B100 fuel. Summer – low use period. This site has special sampling taps before and after the filter.

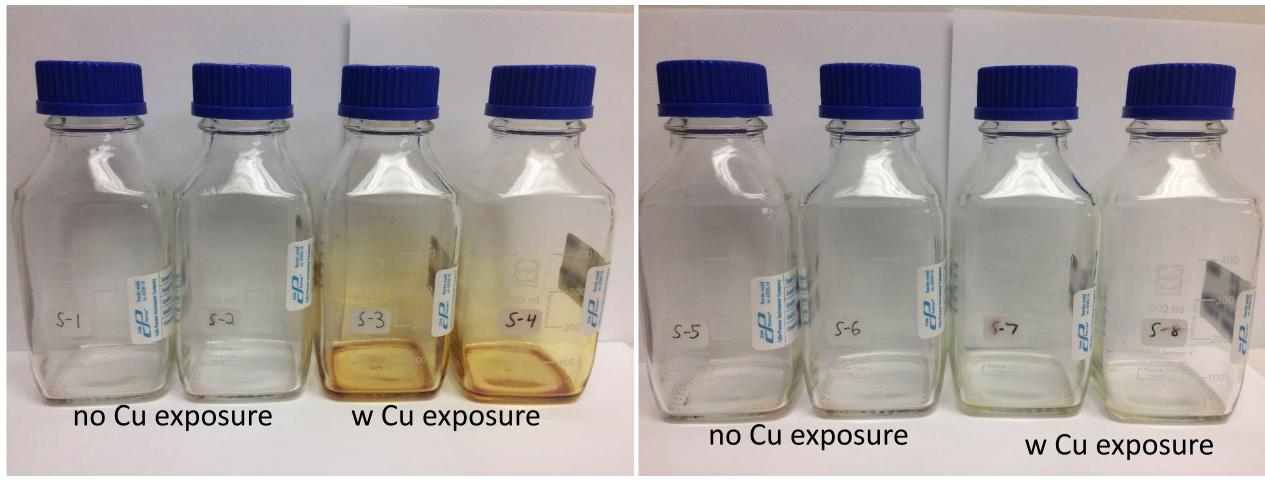


#### Copper Exposure Test -1 (at NORA)

Common copper tube Vertical, sealed at bottom I.D. = 6.75 mm O.D. = 9.36 mm Fuel Volume = 14 ml Exposure time = 24 hours Ambient temperature Control sample without copper exposure Exposure 5.9 cm<sup>2</sup>/cm<sup>3</sup>

| Sample              | Oxidative Reserve<br>(Rancimat – hrs) |
|---------------------|---------------------------------------|
| No. 2 oil (control) | 18.3                                  |
| No. 2 oil (copper)  | 3.1                                   |
| B20 (control)       | 8.2                                   |
| B20 (copper)        | 1.0                                   |
| B50 (control)       | 7.8                                   |
| B50 (copper)        | 0.1                                   |
| B100 (control)      | 6.1                                   |
| B100 (copper)       | 0.1                                   |

Note: No. 2 heating oil contains nomially 5% biodiesel.

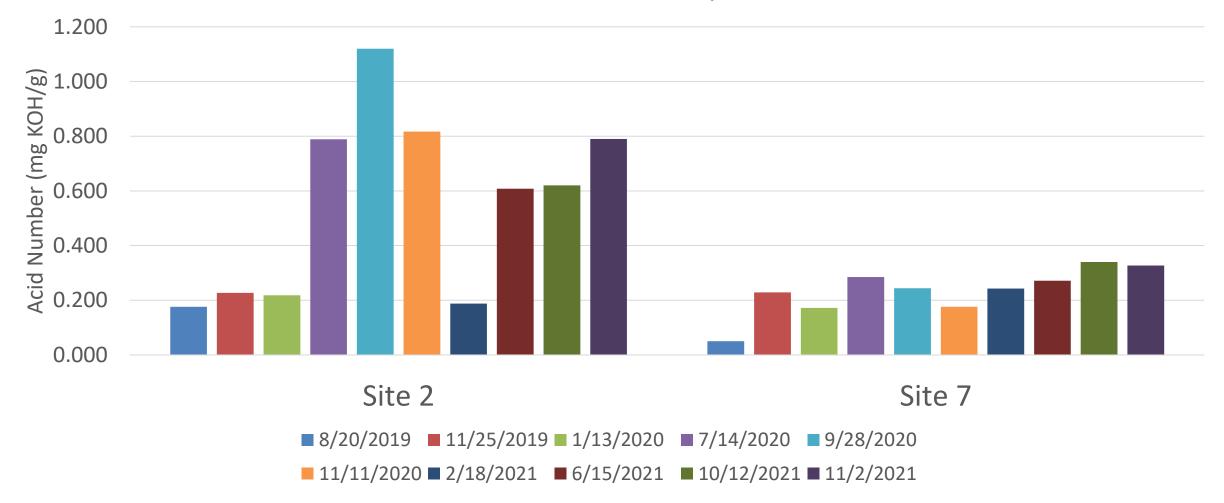

## Copper Exposure Test -2 (at REG)

Oxidative Same exposure  $\bullet$ Copper Lead Zinc Reserve conditions as test 1 Sample content content content (Rancimat (ppm) (ppm) (ppm) – hrs) B50 only  $\bullet$ B50 7.6 0.1 0.1 0.1 Different fuels, done at  $\bullet$ (control) **REG** lab **B50** Added metals analysis 1.3  $\bullet$ 0.2 4.1 1.6 (copper) by ICP

# Long Term Storage Stability Test (ASTM D4625)



- Glass containers at 43 °C, 9 weeks;
- Analysis for filterable insoluble and adherent insolubles;
- 0.8 micron filter, vacuum filtration;
- Solvent acetone, methyl alcohol, toluene;
- Acid number and Oxidative reserve before and after as added metrics;
- Fuel samples exposed to copper for 24 hours using cut copper pieces in glass beaker. Fuel then separated from copper prior to the start of the test.
- Exposure 0.59 cm<sup>2</sup>/cm<sup>3</sup>




#### No. 2 heating oil (nominal B5)

B20 Blend

#### Acid Number Over Time

#### Acid Number Examples



# Summer Fuel Stability B50

Over the summer, no deliveries are made. Is the fuel stability decreased over this summer period? And does the stability improve with a new delivery?

| Site    | Jan 2020 | July 2020 | Sept 2020 | Nov 2020 |
|---------|----------|-----------|-----------|----------|
| Site 1  | 8.4      | 5.04      | 3.17      | 1.96     |
| Site 2  | 10.4     | 2.82      |           | 0.52     |
| Site 3  | 1.0      | 0.68      | 0.57      | 0.45     |
| Site 5  | 8.6      | 5.80      | 4.83      | 9.54     |
| Site 6  | 10.3     | 8.16      | 6.37      | 9.55     |
| Site 7  | 10.5     | 9.28      | 5.25      | 10.22    |
| Site 8  | 11.5     | 6.78      | 5.91      | 11.94    |
| Site 9  | 6.2      | 0.04      | 0.81      | 2.44     |
| Site 10 | 4.7      | 7.24      | 4.63      | 3.92     |
| Site 11 | 2.9      | 2.19      | 2.71      | 5.02     |
| Site 12 | 5.2      | 1.44      | 0.85      | 9.73     |

Note: Last delivery in spring done on May 14, first delivery of fall done on Oct 21

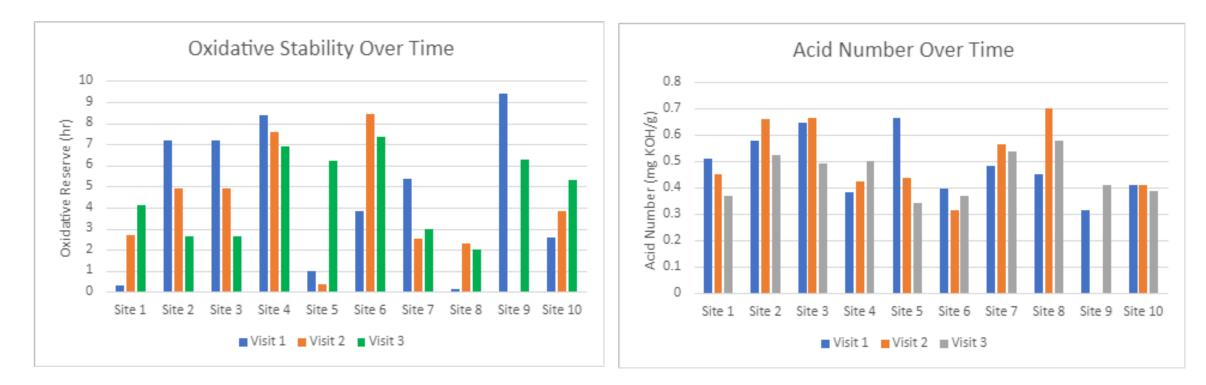
#### B50 Field Test Summary

#### **ASTM Limits**

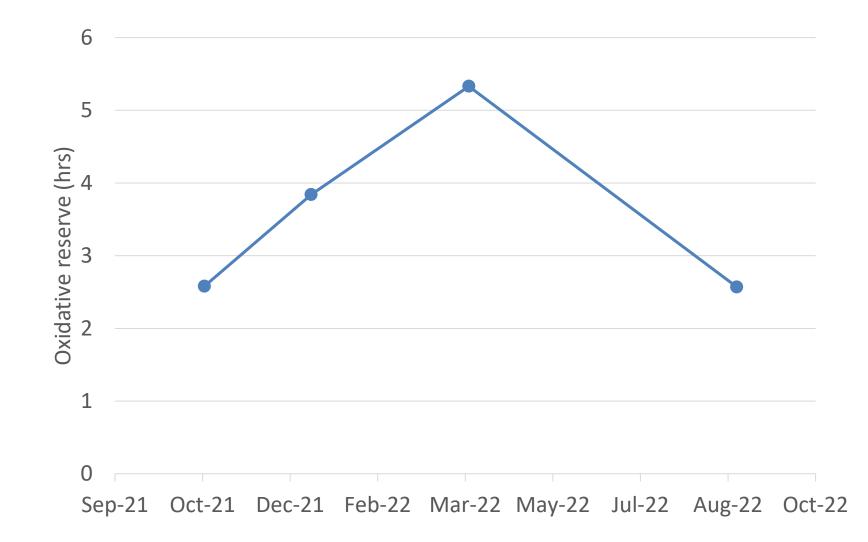
|                    | B20   | B100 |
|--------------------|-------|------|
| Rancimat (hrs)     | 6     | 3    |
| TAN (mg/kg)        | 0.3   | 0.5  |
| Carbon Residue (%) | 0.035 | 0.05 |

|                       | Rancimat      | TAN       |
|-----------------------|---------------|-----------|
| End of Heating Season | 0% > 6 hours  | 70% > 0.3 |
|                       | 90% > 3 hours | 20% > 0.5 |
| End of Summer         | 0% > 6 hours  | 90% > 0.3 |
|                       | 40% > 3 hours | 40% > 0.5 |

## Carbon Buildup


- Some sites in the test showed a buildup of carbon on the burner head or in the air tube
- Investigations into the root cause and preventative measures for this issue are ongoing






### B100 Test

• B100 Field Test at Hart Home Comfort is Continuing. Started Nov. 2021. 10 Sites. End of Summer Samples Recently Collected. Analysis in Progress.



Visit 1 – Nov 2021, Visit 2 – Feb. 2022, Visit 3 – April 2022

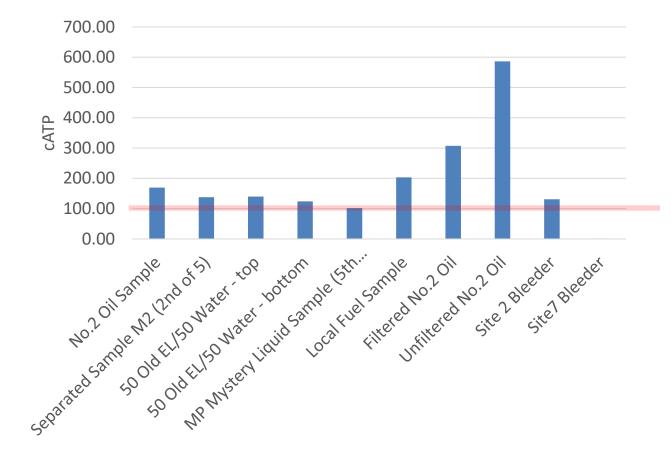


Oxidative reserve over time – site 10

## NORA In-House Rapid Coking Test

- Peerless Boiler
- 1 hour of steady state followed by 1000 cycles; 15s on and 60s off
- Fuels used:
  - B5 from in-house tank
  - Soy based and part-UCO based B100
  - B50 made using part-UCO B100
  - Distilled B100
- Head pictures taken before and after test along with mass measurement
- 43 tests done on Peerless boiler under various conditions and fuels

### NORA Rapid Coking Test – Observations to Date


- Increasing biodiesel content leads to more deposit
- Less deposit mass with added refractory
- Cycling as a key source of deposit mass
- Post-purge helps reduce deposits
- Distilled biodiesel less mass than non-distilled

This work is ongoing. In parallel our Engineering Intern – Michael Persch is developing a concept for a Master's Thesis at Stony Brook University modeling the practical impacts of biodiesel's distillation characteristics on liquid fuel flow back to the burner head.

A limited field test of distilled biodiesel is also being started in collaboration with Cubby Oil.

#### **Corrosion in Tanks**

Recent published studies showed no significant impact of biodiesel or fuel sulfur level; Water plus products of biological or oxidative degradation key factors; Current NORA work focused on tools to evaluate how bad a tank environment is.



New instrument at NORA measures ATP a strong indicator of biological activity.

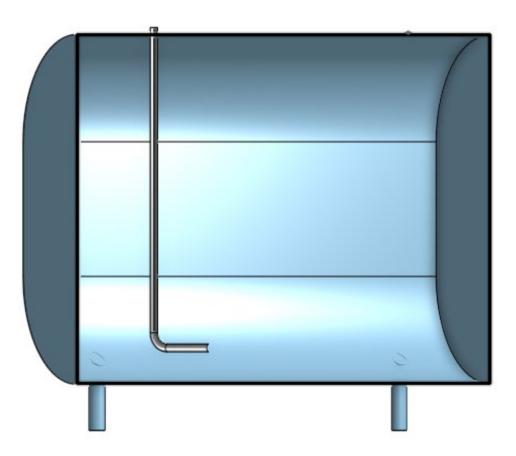


Possible ways to address biodiesel and biodiesel blend cold flow

- Specify biodiesel properties for location/season;
- Additives;
- Blend with No. 2 petroleum or kerosene;
- Winterization (fractional crystallization);
- Isomerization;
- Esterification with alternative alcohols;
- Control temperature environment / heating.

# Solutions for Outside Tanks

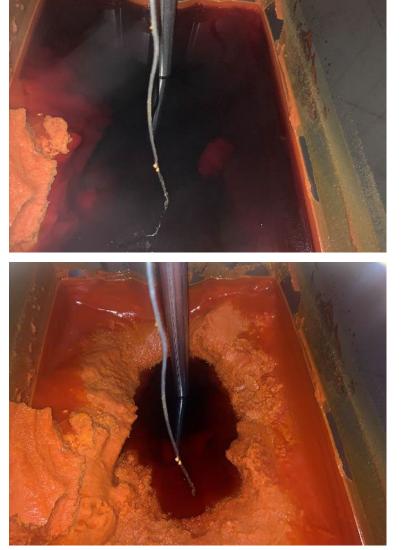
- Almost 90% of home heating oil tanks in the U.S. are located inside the home (i.e., in the basement)
  - This essentially eliminates cold flow concerns with B50 or B100 for most homeowners
- For B50 proper management of fuel selection and additives will likely provide adequate cold flow for the 10% of outside home heating oil tanks
- For B100 (maybe some B50) alternative solutions will be needed for the 10% of tanks that are outside
  - Many tanks cannot practically be moved inside
  - Segregating deliveries not desired
  - Require heat or insulation of some sort





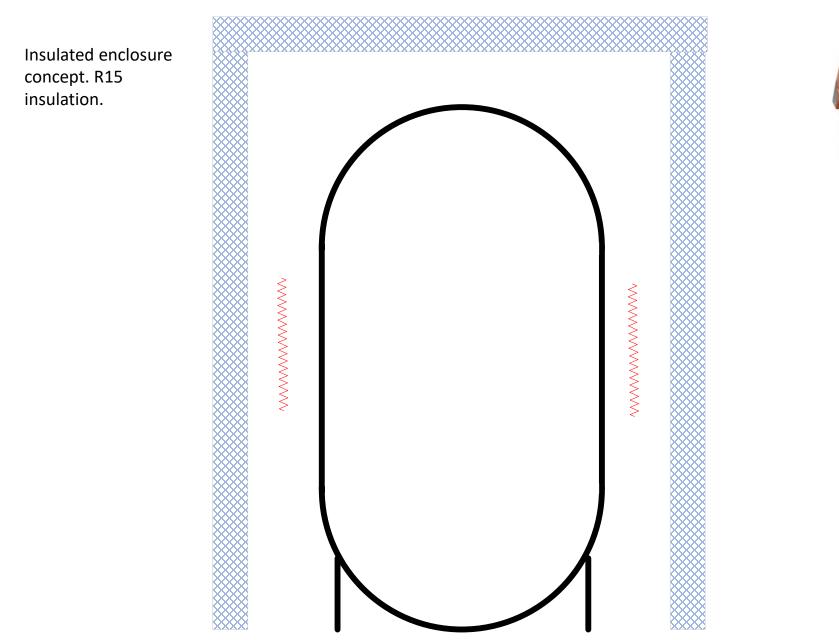






### Horizontal Heating Element



#### Failure of Test Visualized


2 hours





#### 23 hours







#### Summary of Tank Heating Tests

- An in-tank, 200 watt heater is effective, can recover a gelled tank in about 8 hours;
- An insulated enclosure with heater in the air space very effective for maintaining tank but not for rapid recovery;
- Insulated "jackets" effective but concern about condensation between jacket and tank and corrosion. Need to be able to inspect tank.
- Solution will depend on region.

# Thanks!

Tom Butcher National Oilheat Research Alliance <u>tbutcher@noraweb.org</u> (571) 234 7756

NORA Lab Team: Ryan Kerr, Neehad Islam, John Levey, Bob O'Brien, Tom Butcher

More details: www.noraweb.org/technical-bulletins/